Torchao
目标受众为机器学习工程师、数据科学家和研究人员,他们需要在保持模型精度的同时,提高模型的推理速度和减少内存占用。torchao通过提供多种量化和稀疏化技术,帮助用户优化他们的PyTorch模型,以适应资源受限的环境或提高大规模部署的效率。
总访问量: 474,564,576
占比最多地区: US(19.34%)
648
简介
torchao是PyTorch的一个库,专注于自定义数据类型和优化,支持量化和稀疏化权重、梯度、优化器和激活函数,用于推理和训练。它与torch.compile()和FSDP2兼容,能够为大多数PyTorch模型提供加速。torchao旨在通过量化感知训练(QAT)和后训练量化(PTQ)等技术,提高模型的推理速度和内存效率,同时尽量减小精度损失。
截图
产品特色
支持后训练量化(Post Training Quantization)和量化感知训练(Quantization Aware Training)。
提供量化和稀疏化选项,包括仅量化权重、权重和激活一起量化,以及权重激活量化并稀疏化权重。
支持自定义量化算法的开发者API。
提供KV缓存量化功能,以支持长上下文长度的推理。
支持Float8训练,使用scaled float8数据类型。
支持稀疏训练,提供2:4稀疏性支持。
提供内存高效的优化器,如8位和4位量化的AdamW优化器。
支持单GPU CPU卸载,有效减少VRAM需求。
使用教程
安装torchao库。
选择需要量化的模型。
根据模型的特点,选择合适的量化策略。
使用torchao的API对模型进行量化。
如果需要,进行量化感知训练。
在训练完成后,使用torchao的API将模型转换为量化模型。
部署量化后的模型进行推理。
监控和评估量化模型的性能。
流量来源
直接访问51.61%外链引荐33.46%邮件0.04%
自然搜索12.58%社交媒体2.19%展示广告0.11%
最新流量情况
月访问量
4.92m
平均访问时长
393.01
每次访问页数
6.11
跳出率
36.20%
总流量趋势图
地理流量分布情况
美国
19.34%
中国
13.25%
印度
9.32%
俄罗斯
4.28%
德国
3.63%
地理流量分布全球图