Mplug DocOwl 1.5
Mplug DocOwl 1.5
目标受众主要是需要进行文档自动化处理的企业和研究机构,如自动化办公、文档数字化、智能客服等领域。mPLUG-DocOwl 1.5 通过其高精度的文档解析和理解能力,能够帮助这些用户大幅提升文档处理的效率和质量,降低人工干预的成本。
总访问量: 474,564,576
占比最多地区: US(19.34%)
588
简介
mPLUG-DocOwl 1.5 是一个致力于OCR-free文档理解的统一结构学习模型,它通过深度学习技术实现了对文档的直接理解,无需传统的光学字符识别(OCR)过程。该模型能够处理包括文档、网页、表格和图表在内的多种类型的图像,支持结构感知的文档解析、多粒度的文本识别和定位,以及问答等功能。mPLUG-DocOwl 1.5 的研发背景是基于对文档理解自动化和智能化的需求,旨在提高文档处理的效率和准确性。该模型的开源特性也促进了学术界和工业界的进一步研究和应用。
截图
产品特色
支持结构感知的文档解析,能够识别和理解文档中的结构化信息。
支持表格到Markdown和图表到Markdown的转换,方便文档内容的再利用。
支持多粒度的文本识别和文本定位,提高了文档内容提取的准确性。
支持简单短语或详细解释的问题回答,增强了模型的交互性和应用范围。
模型开源,提供了训练数据、模型代码和在线演示,便于研究者和开发者使用和二次开发。
提供了基于不同应用场景的多个模型版本,如DocOwl1.5-stage1、DocOwl1.5、DocOwl1.5-Chat和DocOwl1.5-Omni。
使用教程
1. 准备Python环境,安装必要的依赖包,如transformers、torch等。
2. 下载并解压mPLUG-DocOwl 1.5提供的训练数据集,如DocStruct4M、DocReason25K等。
3. 根据具体需求选择合适的模型版本,如DocOwl1.5-stage1或DocOwl1.5-Chat。
4. 使用提供的代码示例进行模型的推理测试,验证模型的功能和性能。
5. 若需要进一步训练或微调模型,可以按照提供的指南准备训练数据,并运行训练脚本。
6. 对于需要部署模型的用户,可以参考提供的本地演示代码,搭建自己的应用服务。
流量来源
直接访问51.61%外链引荐33.46%邮件0.04%
自然搜索12.58%社交媒体2.19%展示广告0.11%
最新流量情况
月访问量
4.92m
平均访问时长
393.01
每次访问页数
6.11
跳出率
36.20%
总流量趋势图
地理流量分布情况
美国
19.34%
中国
13.25%
印度
9.32%
俄罗斯
4.28%
德国
3.63%
地理流量分布全球图
同类开源产品
MIT MAIA
优质新品
MAIA(Multimodal Automated Interpretability Agent)是由MIT计算机科学与人工智能实验室(CSAIL)开发的一个自动化系统,旨在提高人工智能模型的解释性。
研究工具#自动化
Dmind
DMind-1 和 DMind-1-mini 是针对 Web3 任务的领域专用大型语言模型,提供比其他通用模型更高的领域准确性、指令跟随能力及专业理解。
AI模型#人工智能
Arxiv Summarizer
该产品是一个 Python 脚本,利用 Gemini API 从 arXiv 获取和总结研究论文。
研究工具#论文摘要
Fastvlm
FastVLM 是一种高效的视觉编码模型,专为视觉语言模型设计。
AI模型#图像处理
Surfsense
SurfSense 是一款开源的 AI 研究助手,它将多种外部资源(如搜索引擎、Slack、Notion 等)整合在一起,帮助用户高效地进行研究和信息管理。
研究工具#信息管理
Zerosearch
ZeroSearch 是一种新颖的强化学习框架,旨在激励大型语言模型(LLMs)的搜索能力,而无需与实际搜索引擎进行交互。
AI模型#搜索能力
Deerflow
DeerFlow 是一个深度研究框架,旨在结合语言模型与如网页搜索、爬虫及 Python 执行等专用工具,以推动深入研究工作。
研究工具#开源
Notellm
NoteLLM 是一款专注于用户生成内容的可检索大型语言模型,旨在提升推荐系统的性能。
AI模型#多模态处理
Deepseek Prover V2 671B
DeepSeek-Prover-V2-671B 是一个先进的人工智能模型,旨在提供强大的推理能力。
AI模型#开源