Datagemma RIG
Datagemma RIG
DataGemma RIG模型适合那些需要在文本生成中整合统计数据的研究人员和开发者。它特别适用于需要准确、可靠数据支持的学术研究和数据分析项目。
总访问量: 29,742,941
占比最多地区: US(17.94%)
264
简介
DataGemma RIG是一系列微调后的Gemma 2模型,旨在帮助大型语言模型(LLMs)访问并整合来自Data Commons的可靠公共统计数据。该模型采用检索式生成方法,通过自然语言查询Data Commons的现有自然语言接口,对响应中的统计数据进行注释。DataGemma RIG在TPUv5e上使用JAX进行训练,目前是早期版本,主要用于学术和研究目的,尚未准备好用于商业或公众使用。
截图
产品特色
文本生成:根据输入的文本字符串,生成响应并注释统计数据。
自然语言查询:在生成的文本中,使用自然语言查询来获取统计数据。
微调模型:基于Gemma 2模型进行微调,以适应特定的数据检索任务。
4位量化:支持通过bitsandbytes库以4位量化的方式运行模型,以优化性能。
代码示例:提供代码示例,方便用户快速开始使用模型。
伦理和安全性:在模型发布前进行红队测试,检查潜在的危险查询。
学术和研究用途:专为学术和研究目的设计,不适用于商业或公众使用。
使用教程
首先,确保安装了必要的库,如transformers和bitsandbytes。
使用AutoTokenizer和AutoModelForCausalLM从Hugging Face加载模型。
设置模型的设备映射和量化配置,以优化性能。
定义输入文本,这可以是一个问题或提示。
使用tokenizer将输入文本转换为模型可以理解的格式。
调用模型的generate方法生成响应。
使用tokenizer.batch_decode方法将生成的token转换回文本。
打印或使用生成的文本,其中包含注释的统计数据。
流量来源
直接访问48.39%外链引荐35.85%邮件0.03%
自然搜索12.76%社交媒体2.96%展示广告0.02%
最新流量情况
月访问量
25296.55k
平均访问时长
285.77
每次访问页数
5.83
跳出率
43.31%
总流量趋势图
地理流量分布情况
美国
17.94%
中国
17.08%
印度
8.40%
俄罗斯
4.58%
日本
3.42%
地理流量分布全球图