PIKE RAG
PIKE-RAG 适合需要深度领域知识和复杂逻辑推理的工业应用场景,例如医疗、制造业、矿业和制药等领域。它能够帮助企业和研究人员快速构建高效的知识问答系统,提升决策效率和准确性。此外,由于其开源特性,也适合学术研究人员和开发者进行进一步的探
总访问量: 474,564,576
占比最多地区: US(19.34%)
1,416
简介
PIKE-RAG 是微软开发的一种领域知识和推理增强生成模型,旨在通过知识提取、存储和推理逻辑增强大型语言模型(LLM)的能力。该模型通过多模块设计,能够处理复杂的多跳问答任务,并在工业制造、矿业和制药等领域显著提升了问答准确性。PIKE-RAG 的主要优点包括高效的知识提取能力、强大的多源信息整合能力和多步推理能力,使其在需要深度领域知识和复杂逻辑推理的场景中表现出色。
截图
产品特色
支持多跳问答任务,能够整合多源信息进行复杂推理。
通过知识提取和存储模块,增强对领域特定知识的理解和应用。
提供灵活的模块化设计,可根据不同场景调整子模块以满足多样化需求。
在公共基准测试中表现出色,如 HotpotQA、2WikiMultiHopQA 和 MuSiQue 数据集上取得了优异的准确率。
支持知识感知的分解管道,能够合理分解复杂任务并提供解决方案。
提供在线演示和详细的文档支持,帮助用户快速上手和部署。
适用于多种工业应用场景,如医疗记录检索、治疗计划建议等。
开源许可,允许用户自由使用和扩展,促进社区贡献和创新。
使用教程
1. 克隆该仓库并设置 Python 环境,参考文档进行环境配置。
2. 创建一个 .env 文件,保存你的端点信息和其他环境变量。
3. 修改 yaml 配置文件,尝试运行 examples 文件夹中的脚本。
4. 根据需求构建自己的管道或添加自定义组件。
5. 使用在线演示或查看技术报告了解更多功能和使用场景。
流量来源
直接访问51.61%外链引荐33.46%邮件0.04%
自然搜索12.58%社交媒体2.19%展示广告0.11%
最新流量情况
月访问量
4.92m
平均访问时长
393.01
每次访问页数
6.11
跳出率
36.20%
总流量趋势图
地理流量分布情况
美国
19.34%
中国
13.25%
印度
9.32%
俄罗斯
4.28%
德国
3.63%
地理流量分布全球图
同类开源产品
MIT MAIA
优质新品
MAIA(Multimodal Automated Interpretability Agent)是由MIT计算机科学与人工智能实验室(CSAIL)开发的一个自动化系统,旨在提高人工智能模型的解释性。
研究工具#自动化
Dmind
DMind-1 和 DMind-1-mini 是针对 Web3 任务的领域专用大型语言模型,提供比其他通用模型更高的领域准确性、指令跟随能力及专业理解。
AI模型#人工智能
Arxiv Summarizer
该产品是一个 Python 脚本,利用 Gemini API 从 arXiv 获取和总结研究论文。
研究工具#论文摘要
Fastvlm
FastVLM 是一种高效的视觉编码模型,专为视觉语言模型设计。
AI模型#图像处理
Surfsense
SurfSense 是一款开源的 AI 研究助手,它将多种外部资源(如搜索引擎、Slack、Notion 等)整合在一起,帮助用户高效地进行研究和信息管理。
研究工具#信息管理
Zerosearch
ZeroSearch 是一种新颖的强化学习框架,旨在激励大型语言模型(LLMs)的搜索能力,而无需与实际搜索引擎进行交互。
AI模型#搜索能力
Deerflow
DeerFlow 是一个深度研究框架,旨在结合语言模型与如网页搜索、爬虫及 Python 执行等专用工具,以推动深入研究工作。
研究工具#开源
Notellm
NoteLLM 是一款专注于用户生成内容的可检索大型语言模型,旨在提升推荐系统的性能。
AI模型#多模态处理
Deepseek Prover V2 671B
DeepSeek-Prover-V2-671B 是一个先进的人工智能模型,旨在提供强大的推理能力。
AI模型#开源