Llava Video
Llava Video
目标受众为视频理解和多模态研究的科研人员、开发者以及对视频语言模型感兴趣的企业。LLaVA-Video提供的高质量合成数据集和先进的视频表示方法,能够帮助他们构建和优化更准确、更高效的视频理解模型,推动视频分析和多模态交互技术的发展。
总访问量: 80,956
占比最多地区: US(22.84%)
768
简介
LLaVA-Video是一个专注于视频指令调优的大型多模态模型(LMMs),通过创建高质量的合成数据集LLaVA-Video-178K来解决从网络获取大量高质量原始数据的难题。该数据集包括详细的视频描述、开放式问答和多项选择问答等任务,旨在提高视频语言模型的理解和推理能力。LLaVA-Video模型在多个视频基准测试中表现出色,证明了其数据集的有效性。
截图
产品特色
视频指令调优:通过合成数据集LLaVA-Video-178K进行训练,提高视频语言模型的指令跟随能力。
多任务处理:数据集涵盖视频描述、开放式问答和多项选择问答等多种任务类型。
高质量数据合成:利用GPT-4o生成详细的视频描述和多样化的问题回答对。
视频表示优化:采用SlowFast视频表示方法,平衡帧数和视觉标记的数量,提高GPU资源利用率。
跨数据集性能提升:结合现有视觉指令调优数据,通过LLaVA-Video-178K数据集训练,增强模型在多个视频基准测试中的表现。
开源资源:提供数据集、生成流程和模型检查点,促进学术界和工业界的进一步研究和应用。
使用教程
1. 访问LLaVA-Video的官方网站或GitHub页面,了解项目背景和模型特点。
2. 下载LLaVA-Video-178K数据集,以及相应的模型检查点。
3. 根据提供的Training Code设置实验环境,包括安装必要的依赖库和配置硬件资源。
4. 使用数据集对LLaVA-Video模型进行预训练或微调,以适应特定的视频理解和分析任务。
5. 利用训练好的模型进行视频内容的分析和处理,如视频描述生成、视频问答等。
6. 参考Interactive Demos部分,了解模型在实际应用中的示例和效果。
7. 根据需要,可以对模型进行进一步的定制和优化,以满足特定的业务需求。
流量来源
直接访问40.74%外链引荐45.90%邮件0.09%
自然搜索10.64%社交媒体2.03%展示广告0.57%
最新流量情况
月访问量
65.04k
平均访问时长
26.32
每次访问页数
1.35
跳出率
51.34%
总流量趋势图
地理流量分布情况
美国
22.84%
中国
10.00%
印度
9.00%
韩国
7.70%
英国
4.78%
地理流量分布全球图