Knowledge Graph RAG
Knowledge Graph RAG
目标受众主要是数据科学家、自然语言处理工程师和研究人员,他们需要处理大量文本数据并从中提取有用信息。Knowledge Graph RAG能够帮助他们构建结构化的文本信息网络,从而提高信息检索和处理的效率。
总访问量: 474,564,576
占比最多地区: US(19.34%)
1,980
简介
Knowledge Graph RAG 是一个开源的Python库,它通过创建知识图谱和文档网络来增强大型语言模型(LLM)的性能。这个库允许用户通过图谱结构来搜索和关联信息,从而为语言模型提供更丰富的上下文。它主要应用于自然语言处理领域,尤其是在文档检索和信息抽取任务中。
截图
产品特色
自动创建知识图谱和文档网络
通过图谱结构搜索知识实体或互联文档
利用tf-idf算法创建文档图谱
支持搜索邻居节点和相似文档
提供Python接口,易于集成和扩展
支持自定义图谱节点和边的属性
适用于增强大型语言模型的上下文理解能力
使用教程
1. 安装Knowledge Graph RAG库:使用pip命令安装。
2. 创建知识图谱或文档图谱:根据需求定义图谱结构和节点属性。
3. 搜索知识图谱中的实体或文档:利用图谱的搜索功能查找相关信息。
4. 利用图谱结构增强语言模型:将图谱信息整合到模型输入中,提高模型性能。
5. 自定义图谱节点和边:根据特定需求调整图谱结构。
6. 集成到现有项目中:将Knowledge Graph RAG作为模块集成到Python项目中。
7. 持续优化和更新:根据反馈和最新研究成果更新图谱和模型。
流量来源
直接访问51.61%外链引荐33.46%邮件0.04%
自然搜索12.58%社交媒体2.19%展示广告0.11%
最新流量情况
月访问量
4.92m
平均访问时长
393.01
每次访问页数
6.11
跳出率
36.20%
总流量趋势图
地理流量分布情况
美国
19.34%
中国
13.25%
印度
9.32%
俄罗斯
4.28%
德国
3.63%
地理流量分布全球图