RAG Retrieval
["适用于需要高效检索和排序模型的开发者和数据科学家","适合在自然语言处理和信息检索领域的研究和应用","适合希望简化模型部署和推理流程的团队和个人"]
总访问量: 474,564,576
占比最多地区: US(19.34%)
600
简介
RAG-Retrieval是一个全链路的RAG检索微调和推理框架,支持多种RAG Reranker模型的推理,包括向量模型、迟交互式模型和交互式模型。它提供了一个轻量级的Python库,使得用户能够以统一的方式调用不同的RAG排序模型,简化了排序模型的使用和部署。
截图
产品特色
支持多种排序模型,如Cross Encoder Reranker和LLM Reranker
对长文档友好,支持最大长度截断和切分取最大分值的处理逻辑
易于扩展,新排序模型的集成只需继承basereranker并实现特定函数
提供了统一的接口,简化了不同模型的推理过程
支持微调任意开源的RAG检索模型
提供了详细的使用教程和测试案例,方便用户学习和对齐原有推理框架
使用教程
步骤1:访问RAG-Retrieval的GitHub页面并下载代码
步骤2:根据系统环境手动安装与本地CUDA版本兼容的torch
步骤3:通过pip安装rag-retrieval库
步骤4:根据需要选择并配置支持的Reranker模型
步骤5:使用rag-retrieval库进行模型的推理或微调
步骤6:根据提供的测试案例验证模型性能
步骤7:集成到具体应用中,进行实际的检索和排序任务
流量来源
直接访问51.61%外链引荐33.46%邮件0.04%
自然搜索12.58%社交媒体2.19%展示广告0.11%
最新流量情况
月访问量
4.92m
平均访问时长
393.01
每次访问页数
6.11
跳出率
36.20%
总流量趋势图
地理流量分布情况
美国
19.34%
中国
13.25%
印度
9.32%
俄罗斯
4.28%
德国
3.63%
地理流量分布全球图