Level Navi Agent Search
Level Navi Agent Search
Level-Navi Agent适合研究人员和开发者,用于评估和开发大语言模型在中文网络搜索任务中的应用。它为模型的搜索能力提供了标准化的评估工具,帮助优化模型性能。
总访问量: 492,133,528
占比最多地区: US(19.34%)
660
简介
Level-Navi Agent是一个开源的通用网络搜索代理框架,能够将复杂问题分解并逐步搜索互联网上的信息,直至回答用户问题。它通过提供Web24数据集,覆盖金融、游戏、体育、电影和事件等五大领域,为评估模型在搜索任务上的表现提供了基准。该框架支持零样本和少样本学习,为大语言模型在中文网络搜索代理领域的应用提供了重要参考。
截图
产品特色
支持零样本和少样本学习,适应不同模型需求
提供Web24数据集,涵盖金融、游戏、体育、电影和事件五大领域
兼容多种大语言模型,可灵活部署
逐步搜索能力,精准理解复杂问题
开源框架,便于开发者扩展和定制
使用教程
1. 克隆项目:通过`git clone https://github.com/chuanruihu/Level-Navi-Agent-Search.git`获取代码。
2. 创建Python虚拟环境:使用`conda create --name ai_search python=3.11`创建环境。
3. 安装依赖:进入项目目录后运行`pip install -r requirements.txt`安装依赖。
4. 配置搜索引擎API:在配置文件中设置Bing API Key。
5. 启动测试:运行示例代码`python terminal.py`进行测试。
流量来源
直接访问51.61%外链引荐33.46%邮件0.04%
自然搜索12.58%社交媒体2.19%展示广告0.11%
最新流量情况
月访问量
4.92m
平均访问时长
393.01
每次访问页数
6.11
跳出率
36.20%
总流量趋势图
地理流量分布情况
美国
19.34%
中国
13.25%
印度
9.32%
俄罗斯
4.28%
德国
3.63%
地理流量分布全球图
替代品
Arxiv Summarizer
该产品是一个 Python 脚本,利用 Gemini API 从 arXiv 获取和总结研究论文。
研究工具#论文摘要
Surfsense
SurfSense 是一款开源的 AI 研究助手,它将多种外部资源(如搜索引擎、Slack、Notion 等)整合在一起,帮助用户高效地进行研究和信息管理。
研究工具#信息管理
Deerflow
DeerFlow 是一个深度研究框架,旨在结合语言模型与如网页搜索、爬虫及 Python 执行等专用工具,以推动深入研究工作。
研究工具#开源
Camerabench
CameraBench 是一个用于分析视频中相机运动的模型,旨在通过视频理解相机的运动模式。
研究工具#相机运动
Brave Search MCP Server
Brave Search MCP Server 是由 Brave Software 开发的网络搜索工具,拥有超过 100 亿网页的索引,支持本地搜索功能,能快速提供用户需要的信息,适合寻找实时、本地化的商家和服务。
AI搜索#本地搜索
Smoldocling
SmolDocling-256M-preview是由ds4sd推出的一个具有256M参数的语言模型,专注于医学领域。
研究工具#医学文本处理
LBM
该产品是基于格子玻尔兹曼方法(LBM)的项目,格子玻尔兹曼方法是一种用于计算流体动力学的数值技术,通过模拟微观粒子的运动来描述宏观流体行为。
研究工具#流体动力学
Google CameraTrapAI
Google CameraTrapAI 是一个用于野生动物图像分类的 AI 模型集合。
研究工具#野生动物
Scira
Scira 是一个基于 AI 技术的搜索引擎,旨在通过强大的语言模型和搜索能力,为用户提供更高效、更精准的信息检索体验。
AI搜索#开源