Llama 3 Patronus Lynx 8B Instruct
Llama 3 Patronus Lynx 8B Instruct
目标受众为研究人员、开发者和企业,他们需要一个能够评估和检测AI生成内容真实性的模型,尤其是在需要确保信息准确性的应用场景中,如医疗、金融和学术研究领域。
总访问量: 29,742,941
占比最多地区: US(17.94%)
336
简介
Llama-3-Patronus-Lynx-8B-Instruct是由Patronus AI开发的一个基于meta-llama/Meta-Llama-3-8B-Instruct模型的微调版本,主要用于检测在RAG设置中的幻觉。该模型训练于包含CovidQA、PubmedQA、DROP、RAGTruth等多个数据集,包含人工标注和合成数据。它能够评估给定文档、问题和答案是否忠实于文档内容,不提供文档之外的新信息,也不与文档信息相矛盾。
截图
产品特色
幻觉检测:评估答案是否忠实于给定文档内容。
文本生成:基于提供的问题、文档和答案生成评估结果。
聊天格式训练:模型以聊天格式进行训练,适用于对话系统。
多数据集训练:结合了多个领域的数据集,提高了模型的泛化能力。
开源许可:模型遵循cc-by-nc-4.0许可,允许非商业性质的使用和分发。
高性能:在多个评估数据集上表现优异,尤其在FinanceBench和CovidQA上表现突出。
推理能力:能够运行推理,提供模型生成文本的功能。
使用教程
1. 准备问题、文档和答案的文本内容。
2. 使用模型推荐的prompt格式,将问题、文档和答案填入。
3. 通过Hugging Face的pipeline接口调用模型,传入准备好的prompt。
4. 模型将输出JSON格式的结果,包含'REASONING'和'SCORE'。
5. 根据模型输出的'SCORE'判断答案是否忠实于文档,'PASS'表示忠实,'FAIL'表示不忠实。
6. 分析'REASONING'部分,了解模型的评估理由。
7. 根据需要,将模型部署到自己的环境或使用Hugging Face提供的Inference Endpoints进行推理。
流量来源
直接访问48.39%外链引荐35.85%邮件0.03%
自然搜索12.76%社交媒体2.96%展示广告0.02%
最新流量情况
月访问量
25296.55k
平均访问时长
285.77
每次访问页数
5.83
跳出率
43.31%
总流量趋势图
地理流量分布情况
美国
17.94%
中国
17.08%
印度
8.40%
俄罗斯
4.58%
日本
3.42%
地理流量分布全球图
同类开源产品
MIT MAIA
优质新品
MAIA(Multimodal Automated Interpretability Agent)是由MIT计算机科学与人工智能实验室(CSAIL)开发的一个自动化系统,旨在提高人工智能模型的解释性。
研究工具#自动化
Arxiv Summarizer
该产品是一个 Python 脚本,利用 Gemini API 从 arXiv 获取和总结研究论文。
研究工具#论文摘要
MNN LLM Android App
MNN-LLM 是一款高效的推理框架,旨在优化和加速大语言模型在移动设备和本地 PC 上的部署。
模型训练与部署#人工智能
Surfsense
SurfSense 是一款开源的 AI 研究助手,它将多种外部资源(如搜索引擎、Slack、Notion 等)整合在一起,帮助用户高效地进行研究和信息管理。
研究工具#信息管理
Deerflow
DeerFlow 是一个深度研究框架,旨在结合语言模型与如网页搜索、爬虫及 Python 执行等专用工具,以推动深入研究工作。
研究工具#开源
Camerabench
CameraBench 是一个用于分析视频中相机运动的模型,旨在通过视频理解相机的运动模式。
研究工具#相机运动
Search R1
Search-R1 是一个强化学习框架,旨在训练能够进行推理和调用搜索引擎的语言模型(LLMs)。
模型训练与部署#自然语言处理
Genprm
GenPRM 是一种新兴的过程奖励模型(PRM),通过生成推理来提高在测试时的计算效率。
模型训练与部署#生成推理
Atypica.ai
中文精选
Atypica.AI 是一个专注于商业研究的智能体框架,利用语言模型来分析和理解消费者情绪、市场认知与决策偏好。
研究工具#消费者行为
替代品
Arxiv Summarizer
该产品是一个 Python 脚本,利用 Gemini API 从 arXiv 获取和总结研究论文。
研究工具#论文摘要
MNN LLM Android App
MNN-LLM 是一款高效的推理框架,旨在优化和加速大语言模型在移动设备和本地 PC 上的部署。
模型训练与部署#人工智能
Surfsense
SurfSense 是一款开源的 AI 研究助手,它将多种外部资源(如搜索引擎、Slack、Notion 等)整合在一起,帮助用户高效地进行研究和信息管理。
研究工具#信息管理
Deerflow
DeerFlow 是一个深度研究框架,旨在结合语言模型与如网页搜索、爬虫及 Python 执行等专用工具,以推动深入研究工作。
研究工具#开源
Camerabench
CameraBench 是一个用于分析视频中相机运动的模型,旨在通过视频理解相机的运动模式。
研究工具#相机运动
Search R1
Search-R1 是一个强化学习框架,旨在训练能够进行推理和调用搜索引擎的语言模型(LLMs)。
模型训练与部署#自然语言处理
Arthur Engine
Arthur Engine 是一个旨在监控和治理 AI/ML 工作负载的工具,利用流行的开源技术和框架。
模型训练与部署#机器学习
Smoldocling
SmolDocling-256M-preview是由ds4sd推出的一个具有256M参数的语言模型,专注于医学领域。
研究工具#医学文本处理
Factorio学习环境
Factorio Learning Environment(FLE)是基于《Factorio》游戏构建的新型框架,用于评估大型语言模型(LLMs)在长期规划、程序合成和资源优化方面的能力。
模型训练与部署#Factorio游戏