Text To Pose
Text To Pose
目标受众主要是计算机视觉和自然语言处理领域的研究者、开发者以及艺术家。研究者可以通过该技术探索文本到图像的生成机制,开发者可以利用该技术开发新的应用,而艺术家则可以利用该技术创作新颖的艺术作品。
总访问量: 474,564,576
占比最多地区: US(19.34%)
684
简介
text-to-pose是一个研究项目,旨在通过文本描述生成人物姿态,并利用这些姿态生成图像。该技术结合了自然语言处理和计算机视觉,通过改进扩散模型的控制和质量,实现了从文本到图像的生成。项目背景基于NeurIPS 2024 Workshop上发表的论文,具有创新性和前沿性。该技术的主要优点包括提高图像生成的准确性和可控性,以及在艺术创作和虚拟现实等领域的应用潜力。
截图
产品特色
文本到姿态转换:利用Transformer架构将文本描述转换为人物姿态。
姿态到图像生成:基于生成的姿态,通过扩散模型生成高质量的图像。
模型训练与优化:提供了训练代码和预训练模型,方便研究者和开发者使用。
数据集创建:提供了用于训练和测试的数据集,包括COCO-2017标注数据集。
模型比较:展示了使用不同模型生成的姿态和图像,便于比较效果。
代码和文档:提供了详细的代码和文档,方便用户理解和使用。
使用教程
1. 访问GitHub项目页面,克隆或下载代码。
2. 阅读README文件,了解项目结构和依赖。
3. 安装所需的依赖库和环境。
4. 根据文档说明,运行代码进行模型训练或测试。
5. 使用提供的接口输入文本描述,生成对应的人物姿态。
6. 利用生成的姿态,进一步生成高质量的图像。
7. 分析生成结果,根据需要调整模型参数以优化性能。
流量来源
直接访问51.61%外链引荐33.46%邮件0.04%
自然搜索12.58%社交媒体2.19%展示广告0.11%
最新流量情况
月访问量
4.92m
平均访问时长
393.01
每次访问页数
6.11
跳出率
36.20%
总流量趋势图
地理流量分布情况
美国
19.34%
中国
13.25%
印度
9.32%
俄罗斯
4.28%
德国
3.63%
地理流量分布全球图
同类开源产品