Sparsh
Sparsh的目标受众是机器人学、人工智能和计算机视觉领域的研究者和开发者。它特别适合那些需要在触觉传感领域进行研究或开发应用的专业人士。Sparsh提供的自监督学习和多任务学习框架能够帮助他们提高模型的性能和数据效率,同时开源的特性也便于
总访问量: 474,564,576
占比最多地区: US(19.34%)
276
简介
Sparsh是一系列通过自监督算法(如MAE、DINO和JEPA)训练的通用触觉表示。它能够为DIGIT、Gelsight'17和Gelsight Mini生成有用的表示,并在TacBench提出的下游任务中大幅度超越端到端模型,同时能够为新下游任务的数据高效训练提供支持。Sparsh项目包含PyTorch实现、预训练模型和与Sparsh一起发布的数据集。
截图
产品特色
- 自监督学习算法:Sparsh通过MAE、DINO和JEPA等自监督学习算法进行训练。
- 多触觉传感器支持:能够为DIGIT、Gelsight'17和Gelsight Mini等多种触觉传感器生成有用的表示。
- 下游任务性能优异:在TacBench提出的下游任务中,Sparsh的性能大幅度超越端到端模型。
- 数据高效训练:Sparsh可以支持新下游任务的数据高效训练。
- 预训练模型和数据集:提供PyTorch实现、预训练模型和数据集,方便研究者和开发者使用。
- 多下游任务支持:Sparsh支持包括力估计、滑移检测和姿态估计等多个下游任务。
- 代码和模型开源:Sparsh的代码和模型在GitHub上开源,便于社区贡献和改进。
使用教程
1. 克隆Sparsh仓库到本地:使用git clone命令克隆Sparsh的GitHub仓库。
2. 创建环境:根据项目提供的environment.yml文件创建conda环境,并激活。
3. 下载数据集:按照指南下载并设置预训练数据集。
4. 训练模型:使用train.py脚本和配置文件开始训练Sparsh模型。
5. 微调模型:针对特定的下游任务,使用train_task.py脚本微调Sparsh模型。
6. 测试模型:使用test_task.py脚本测试训练好的模型,并评估性能。
7. 可视化演示:运行demo_forcefield.py脚本,进行力场可视化演示。
流量来源
直接访问51.61%外链引荐33.46%邮件0.04%
自然搜索12.58%社交媒体2.19%展示广告0.11%
最新流量情况
月访问量
4.92m
平均访问时长
393.01
每次访问页数
6.11
跳出率
36.20%
总流量趋势图
地理流量分布情况
美国
19.34%
中国
13.25%
印度
9.32%
俄罗斯
4.28%
德国
3.63%
地理流量分布全球图
同类开源产品
MIT MAIA
优质新品
MAIA(Multimodal Automated Interpretability Agent)是由MIT计算机科学与人工智能实验室(CSAIL)开发的一个自动化系统,旨在提高人工智能模型的解释性。
研究工具#自动化
Arxiv Summarizer
该产品是一个 Python 脚本,利用 Gemini API 从 arXiv 获取和总结研究论文。
研究工具#论文摘要
MNN LLM Android App
MNN-LLM 是一款高效的推理框架,旨在优化和加速大语言模型在移动设备和本地 PC 上的部署。
模型训练与部署#人工智能
Surfsense
SurfSense 是一款开源的 AI 研究助手,它将多种外部资源(如搜索引擎、Slack、Notion 等)整合在一起,帮助用户高效地进行研究和信息管理。
研究工具#信息管理
Deerflow
DeerFlow 是一个深度研究框架,旨在结合语言模型与如网页搜索、爬虫及 Python 执行等专用工具,以推动深入研究工作。
研究工具#开源
Camerabench
CameraBench 是一个用于分析视频中相机运动的模型,旨在通过视频理解相机的运动模式。
研究工具#相机运动
Search R1
Search-R1 是一个强化学习框架,旨在训练能够进行推理和调用搜索引擎的语言模型(LLMs)。
模型训练与部署#自然语言处理
Genprm
GenPRM 是一种新兴的过程奖励模型(PRM),通过生成推理来提高在测试时的计算效率。
模型训练与部署#生成推理
Atypica.ai
中文精选
Atypica.AI 是一个专注于商业研究的智能体框架,利用语言模型来分析和理解消费者情绪、市场认知与决策偏好。
研究工具#消费者行为
替代品
Arxiv Summarizer
该产品是一个 Python 脚本,利用 Gemini API 从 arXiv 获取和总结研究论文。
研究工具#论文摘要
MNN LLM Android App
MNN-LLM 是一款高效的推理框架,旨在优化和加速大语言模型在移动设备和本地 PC 上的部署。
模型训练与部署#人工智能
Surfsense
SurfSense 是一款开源的 AI 研究助手,它将多种外部资源(如搜索引擎、Slack、Notion 等)整合在一起,帮助用户高效地进行研究和信息管理。
研究工具#信息管理
Deerflow
DeerFlow 是一个深度研究框架,旨在结合语言模型与如网页搜索、爬虫及 Python 执行等专用工具,以推动深入研究工作。
研究工具#开源
Camerabench
CameraBench 是一个用于分析视频中相机运动的模型,旨在通过视频理解相机的运动模式。
研究工具#相机运动
Search R1
Search-R1 是一个强化学习框架,旨在训练能够进行推理和调用搜索引擎的语言模型(LLMs)。
模型训练与部署#自然语言处理
Arthur Engine
Arthur Engine 是一个旨在监控和治理 AI/ML 工作负载的工具,利用流行的开源技术和框架。
模型训练与部署#机器学习
Smoldocling
SmolDocling-256M-preview是由ds4sd推出的一个具有256M参数的语言模型,专注于医学领域。
研究工具#医学文本处理
Factorio学习环境
Factorio Learning Environment(FLE)是基于《Factorio》游戏构建的新型框架,用于评估大型语言模型(LLMs)在长期规划、程序合成和资源优化方面的能力。
模型训练与部署#Factorio游戏